oru.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Arain, Muhammad Asif
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Improving Gas Tomography With Mobile Robots: An Evaluation of Sensing Geometries in Complex Environments2017Ingår i: 2017 ISOCS/IEEE International Symposium on Olfaction andElectronic Nose (ISOEN 2017) Proceedings, IEEE, 2017, artikel-id 7968895Konferensbidrag (Refereegranskat)
    Abstract [en]

    An accurate model of gas emissions is of high importance in several real-world applications related to monitoring and surveillance. Gas tomography is a non-intrusive optical method to estimate the spatial distribution of gas concentrations using remote sensors. The choice of sensing geometry, which is the arrangement of sensing positions to perform gas tomography, directly affects the reconstruction quality of the obtained gas distribution maps. In this paper, we present an investigation of criteria that allow to determine suitable sensing geometries for gas tomography. We consider an actuated remote gas sensor installed on a mobile robot, and evaluated a large number of sensing configurations. Experiments in complex settings were conducted using a state-of-the-art CFD-based filament gas dispersal simulator. Our quantitative comparison yields preferred sensing geometries for sensor planning, which allows to better reconstruct gas distributions.

  • 2.
    Asadi, Sahar
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Time-dependent gas distribution modelling2017Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 96, s. 157-170Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Artificial olfaction can help to address pressing environmental problems due to unwanted gas emissions. Sensor networks and mobile robots equipped with gas sensors can be used for e.g. air pollution monitoring. Key in this context is the ability to derive truthful models of gas distribution from a set of sparse measurements. Most statistical gas distribution modelling methods assume that gas dispersion is a time constant random process. While this assumption approximately holds in some situations, it is necessary to model variations over time in order to enable applications of gas distribution modelling in a wider range of realistic scenarios. Time-invariant approaches cannot model well evolving gas plumes, for example, or major changes in gas dispersion due to a sudden change of the environmental conditions. This paper presents two approaches to gas distribution modelling, which introduce a time-dependency and a relation to a time-scale in generating the gas distribution model either by sub-sampling or by introducing a recency weight that relates measurement and prediction time. We evaluated these approaches in experiments performed in two real environments as well as on several simulated experiments. As expected, the comparison of different sub-sampling strategies revealed that more recent measurements are more informative to derive an estimate of the current gas distribution as long as a sufficient spatial coverage is given. Next, we compared a time-dependent gas distribution modelling approach (TD Kernel DM+V), which includes a recency weight, to the state-of-the-art gas distribution modelling approach (Kernel DM+V), which does not consider sampling times. The results indicate a consistent improvement in the prediction of unseen measurements, particularly in dynamic scenarios. Furthermore, this paper discusses the impact of meta-parameters in model selection and compares the performance of time-dependent GDM in different plume conditions. Finally, we investigated how to set the target time for which the model is created. The results indicate that TD Kernel DM+V performs best when the target time is set to the maximum sampling time in the test set.

  • 3.
    Fan, Han
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Arain, Muhammad Asif
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Improving Gas Dispersal Simulation For Mobile Robot Olfaction: Using Robotcreatedoccupancy Maps And Remote Gas Sensors In The Simulation Loop2017Ingår i: 2017 ISOCS/IEEE International Symposium on Olfaction andElectronic Nose (ISOEN 2017) Proceedings, IEEE conference proceedings, 2017, artikel-id 17013581Konferensbidrag (Refereegranskat)
    Abstract [en]

    Mobile robot platforms equipped with olfaction systems have been used in many gas sensing applications. However, in-field validation of mobile robot olfaction systems is time consuming, expensive, cumbersome and lacks repeatability. In order to address these issues, simulation tools are used. However, the available mobile robot olfaction simulations lack models for remote gas sensors, and the possibility to import geometrical representations of actual real-world environments in a convenient way. In this paper, we describe extensions to an open-source CFD-based filament gas dispersal simulator. These improvements arrow to use robot-created occupancy maps and offer remote sensing capabilities in the simulation loop. We demonstrate the novel features in an example application: we created a 3D map a complex indoor environment, and performed a gas emission monitoring task with a Tunable Diode Laser Absorption Spectroscopy based remote gas sensor in a simulated version of the environment.

  • 4.
    Fan, Han
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    A cluster analysis approach based on exploiting density peaks for gas discrimination with electronic noses in open environments2018Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 259, s. 183-203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Gas discrimination in open and uncontrolled environments based on smart low-cost electro-chemical sensor arrays (e-noses) is of great interest in several applications, such as exploration of hazardous areas, environmental monitoring, and industrial surveillance. Gas discrimination for e-noses is usually based on supervised pattern recognition techniques. However, the difficulty and high cost of obtaining extensive and representative labeled training data limits the applicability of supervised learning. Thus, to deal with the lack of information regarding target substances and unknown interferents, unsupervised gas discrimination is an advantageous solution. In this work, we present a cluster-based approach that can infer the number of different chemical compounds, and provide a probabilistic representation of the class labels for the acquired measurements in a given environment. Our approach is validated with the samples collected in indoor and outdoor environments using a mobile robot equipped with an array of commercial metal oxide sensors. Additional validation is carried out using a multi-compound data set collected with stationary sensor arrays inside a wind tunnel under various airflow conditions. The results show that accurate class separation can be achieved with a low sensitivity to the selection of the only free parameter, namely the neighborhood size, which is used for density estimation in the clustering process.

  • 5.
    Fan, Han
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Semi-supervised Gas Detection Using an Ensemble of One-class Classifiers2019Ingår i: 18th ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), IEEE, 2019, artikel-id 151773Konferensbidrag (Refereegranskat)
    Abstract [en]

    Detecting chemical compounds using electronic noses is important in many gas sensing related applications. Existing gas detection methods typically use prior knowledge of the target analytes. However, in some scenarios, the analytes to be detected are not fully known in advance, and preparing a dedicated model is not possible. To address this issue, we propose a gas detection approach using an ensemble of one-class classifiers. The proposed approach is initialized by learning a Mahalanobis-based and a Gaussian based model using clean air only. During the sampling process, the presence of chemicals is detected by the initialized system, which allows to learn a one-class nearest neighbourhood model without supervision. From then on the gas detection considers the predictions of the three one-class models. The proposed approach is validated with real-world experiments, in which a mobile robot equipped with an e-nose was remotely controlled to interact with different chemical analytes in an open environment.

  • 6.
    Fan, Han
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Towards Gas Discrimination and Mapping in Emergency Response Scenarios Using a Mobile Robot with an Electronic Nose2019Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 3, artikel-id E685Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Emergency personnel, such as firefighters, bomb technicians, and urban search and rescue specialists, can be exposed to a variety of extreme hazards during the response to natural and human-made disasters. In many of these scenarios, a risk factor is the presence of hazardous airborne chemicals. The recent and rapid advances in robotics and sensor technologies allow emergency responders to deal with such hazards from relatively safe distances. Mobile robots with gas-sensing capabilities allow to convey useful information such as the possible source positions of different chemicals in the emergency area. However, common gas sampling procedures for laboratory use are not applicable due to the complexity of the environment and the need for fast deployment and analysis. In addition, conventional gas identification approaches, based on supervised learning, cannot handle situations when the number and identities of the present chemicals are unknown. For the purpose of emergency response, all the information concluded from the gas detection events during the robot exploration should be delivered in real time. To address these challenges, we developed an online gas-sensing system using an electronic nose. Our system can automatically perform unsupervised learning and update the discrimination model as the robot is exploring a given environment. The online gas discrimination results are further integrated with geometrical information to derive a multi-compound gas spatial distribution map. The proposed system is deployed on a robot built to operate in harsh environments for supporting fire brigades, and is validated in several different real-world experiments of discriminating and mapping multiple chemical compounds in an indoor open environment. Our results show that the proposed system achieves high accuracy in gas discrimination in an online, unsupervised, and computationally efficient manner. The subsequently created gas distribution maps accurately indicate the presence of different chemicals in the environment, which is of practical significance for emergency response.

  • 7.
    Fan, Han
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Unsupervised gas discrimination in uncontrolled environments by exploiting density peaks2016Ingår i: 2016 IEEE SENSORS, Institute of Electrical and Electronics Engineers (IEEE), 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Gas discrimination with Open Sampling Systems based on low-cost electro-chemical sensor arrays is of great interest in several applications, such as exploration of hazardous areas and environmental monitoring. Due to the lack of labeled training data or the high costs of obtaining them, as well as the presence of unknown interferents in the target environments, supervised learning is often not applicable and thus, unsupervised learning is an interesting alternative. In this work, we present a cluster analysis approach that can infer the number of different chemical compounds and label the measurements in a given uncontrolled environment without relying on previously acquired training data. Our approach is validated with data collected in indoor and outdoor environments by a mobile robot equipped with an array of metal oxide sensors. The results show that high classification accuracy can be achieved with a rather low sensitivity to the selection of the only functional parameter of our proposed algorithm. 

  • 8.
    Hernandez Bennetts, Victor
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Kucner, Tomasz Piotr
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Andersson, Lena
    Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden.
    Johansson, Anders
    Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden.
    Towards occupational health improvement in foundries through dense dust and pollution monitoring using a complementary approach with mobile and stationary sensing nodes2016Ingår i: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 131-136, artikel-id 7759045Konferensbidrag (Refereegranskat)
    Abstract [en]

    In industrial environments, such as metallurgic facilities, human operators are exposed to harsh conditions where ambient air is often polluted with quartz, dust, lead debris and toxic fumes. Constant exposure to respirable particles can cause irreversible health damages and thus it is of high interest for occupational health experts to monitor the air quality on a regular basis. However, current monitoring procedures are carried out sparsely, with data collected in single day campaigns limited to few measurement locations. In this paper we explore the use and present first experimental results of a novel heterogeneous approach that uses a mobile robot and a network of low cost sensing nodes. The proposed system aims to address the spatial and temporal limitations of current monitoring techniques. The mobile robot, along with standard localization and mapping algorithms, allows to produce short term, spatially dense representations of the environment where dust, gas, ambient temperature and airflow information can be modelled. The sensing nodes on the other hand, can collect temporally dense (and usually spatially sparse) information during long periods of time, allowing in this way to register for example, daily variations in the pollution levels. Using data collected with the proposed system in an steel foundry, we show that a heterogeneous approach provides dense spatio-temporal information that can be used to improve the working conditions in industrial facilities.

  • 9.
    Monroy, Javier
    et al.
    Machine Perception and Intelligent Robotics group (MAPIR), Instituto de Investigación Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Gonzalez-Jimenez, Javier
    Machine Perception and Intelligent Robotics group (MAPIR), Instituto de Investigación Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain.
    GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments2017Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 17, nr 7, s. 1479-1494Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  • 10.
    Xing, Yuxin
    et al.
    School of Engineering, University of Warwick, Coventry, UK.
    Vincent, Timothy A.
    School of Engineering, University of Warwick, Coventry, UK.
    Cole, Marina
    School of Engineering, University of Warwick, Coventry, UK.
    Gardner, Julian W.
    School of Engineering, University of Warwick, Coventry, UK.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments2017Ingår i: IEEE SENSORS 2017: Conference Proceedings, New York: Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 1691-1693Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operating in an indoor workshop. It offers significantly improved performance compared to commercial systems, in terms of power consumption, response time and physical size. We verified the ability to discriminate gases in an unsupervised manner, with data collected on the robot and high accuracy was obtained in the classification of propanol versus acetone (96%), and ethanol versus acetone (90%).

  • 11.
    Xing, Yuxin
    et al.
    School of Engineering, University of Warwick, Coventry, UK.
    Vincent, Timothy A.
    School of Engineering, University of Warwick, Coventry, UK.
    Fan, Han
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Schaffernicht, Erik
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Hernandez Bennetts, Victor
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Cole, Marina
    School of Engineering, University of Warwick, Coventry, UK.
    Gardner, Julian W.
    School of Engineering, University of Warwick, Coventry, UK.
    FireNose on Mobile Robot in Harsh Environments2019Ingår i: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 19, nr 24, s. 12418-12431Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work we present a novel multi-sensor unit, a.k.a. FireNose, to detect and discriminate both known and unknown gases in uncontrolled conditions to aid firefighters under harsh conditions. The unit includes three metal oxide (MOX) gas sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infrared (NDIR) sensor optimized for the detection of CO2, a commercial temperature humidity sensor, and a flow sensor. We developed custom film coatings for the MOX sensors (SnO2, WO3 and NiO) which greatly improved the gas sensitivity, response time and lifetime of the miniature devices. Our proposed system exhibits promising performance for gas sensing in harsh environments, in terms of power consumption (∼ 35 mW at 350°C per MOX sensor), response time (<10 s), robustness and physical size. The sensing unit was evaluated with plumes of gases in both, a laboratory setup on a gas testing rig and on-board a mobile robot operating indoors. These high sensitivity, high-bandwidth sensors, together with online unsupervised gas discrimination algorithms, are able to detect and generate their spatial distribution maps accordingly. In the robotic experiments, the resulting gas distribution maps corresponded well to the actual location of the sources. Therefore, we verified its ability to differentiate gases and generate gas maps in real-world experiments.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf