Open this publication in new window or tab >>FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland; Turku Brain and Mind Center, University of Turku, Department of Clinical Medicine, University of Turku and Turku University Hospital, Turku, Finland.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland.
Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Public Health, University of Turku, Turku, Finland; Department of Child Psychiatry, Turku University Hospital, Turku, Finland.
Örebro University, School of Medical Sciences. Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland.
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.
Show others...
2025 (English)In: The Lancet Planetary Health, E-ISSN 2542-5196, Vol. 9, no 9, article id 101309Article in journal (Refereed) Published
Abstract [en]
BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are ubiquitous persistent organic pollutants associated with adverse health outcomes in humans. Although they are associated with autism spectrum disorder and behavioural outcomes, whether PFAS affect brain development is unclear. We aimed to characterise the relationship between maternal PFAS and brain structure and function in typically developing children.
METHODS: This study was set within the FinnBrain Birth Cohort Study, a prospective observational study that enrolled mothers from three clinics in Turku, Finland, during their first trimester of pregnancy. Maternal serum samples at gestational week 24 were analysed for PFAS by mass spectrometry and, at age 5 years, children were assessed through structural, diffusion-weighted, and functional MRI. Whole-brain voxel-level and vertex-level maps of grey matter volume, white matter fractional anisotropy and mean diffusivity, and cortical thickness and surface area were combined to compute ten independent components. Data were analysed by correlation network, elastic net regression, and multivariate linear regression with multiple testing correction.
FINDINGS: Pregnant mothers were enrolled into the birth cohort study between Dec 1, 2011, and April 30, 2015, and study visits at age 5 years took place between Oct 1, 2017, and March 31, 2020. This analysis involved 51 mother-child dyads for whom maternal PFAS concentrations and structural MRI data for the child were available. PFAS concentrations in maternal serum samples were mostly 0-1 ng/mL. Maternal perfluorononanoic acid (PFNA; R2=0·13, β=0·39 [95% CI 0·09-0·69], padj=0·024) and linear perfluorooctanoic acid (PFOA; 0·13, 0·36 [0·09-0·63], padj=0·022) linearly predicted a multimodal component dominated by corpus callosal integrity, whereas branched perfluorohexanesulphonic acid (PFHxS; R2=0·12, β=0·31, padj=0·036) and branched PFOA (R2=0·14, β=0·36, padj=0·016) predicted a component comprising mainly occipital cortex volume and surface area. Branched perfluorooctanesulphonic acid predicted hypothalamic microstructure (R2=0·10, β=0·29, p=0·026). PFNA, linear PFOA, and branched PFOA are associated with increased functional connectivity in the right precentral gyrus, whereas branched PFHxS predicts decreased connectivity in the intracalcerine cortices. Associations were not influenced by sex assigned at birth, but were related to PFAS chemical structure.
INTERPRETATION: We show an association between prenatal PFAS exposure and brain developmental outcomes in children. These findings are pertinent given the ubiquitous circulation of PFAS in humans and the extreme environmental persistence of these substances.
Place, publisher, year, edition, pages
Elsevier, 2025
National Category
Occupational Health and Environmental Health
Identifiers
urn:nbn:se:oru:diva-124341 (URN)10.1016/j.lanplh.2025.101309 (DOI)41077058 (PubMedID)
Funder
EU, Horizon Europe
2025-10-132025-10-132025-10-21Bibliographically approved