Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A case-based patient identification system using pulseoximeter and a personalized health profile
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems)
Örebro University, Örebro, Sweden. (Center for Applied Autonomous Sensor Systems)
Örebro universitet, Institutionen för naturvetenskap och teknik. (Center for Applied Autonomous Sensor Systems)ORCID-id: 0000-0002-3122-693X
2012 (Engelska)Konferensbidrag, Enbart muntlig presentation (Refereegranskat)
Abstract [en]

This paper proposes a case-based system framework in order to identify patient using their health parameters taken with physiological sensors. It combines a personalized health profiling protocol with a Case-Based Reasoning (CBR) approach. The personalized health profiling helps to determine a number of individual parameters which are important inputs for a clinician to make the final diagnosis and treatment plan. The proposed system uses a pulse oximeter that measures pulse rate and blood oxygen saturation. The measurements are taken through an android application in a smart phone which is connected with the pulseoximeter and bluetooth communication. The CBR approach helps clinicians to make a diagnosis, classification and treatment plan by retrieving the most similar previous case. The case may also be used to follow the treatment progress. Here, the cases are formulated with person’s contextual information and extracted features from sensor signal measurements. The features are extracted considering three domain analysis:1) time domain features using statistical measurement, 2) frequency domain features applying Fast Fourier Transform (FFT), and 3) time-frequency domain features applying Discrete Wavelet Transform (DWT). The initial result is acceptable that shows the advancement of the system while combining the personalized health profiling together with CBR.

Ort, förlag, år, upplaga, sidor
2012.
Nationell ämneskategori
Signalbehandling Datorsystem
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-24086OAI: oai:DiVA.org:oru-24086DiVA, id: diva2:540932
Konferens
Workshop on CBR in the Health Sciences at 20th International Conference on Case-Based Reasoning (ICCBR12)
Projekt
RemoteTillgänglig från: 2012-08-24 Skapad: 2012-07-12 Senast uppdaterad: 2023-05-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1627 kB)1748 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1627 kBChecksumma SHA-512
db2cbad17a35392f44a98c3ea10d06d259fb6015ad7ac257871c6fc5c062cbbb323be83f67af4605fb7707c9ff43fddf65936dd3f0aa54736fba39e8cfa047f9
Typ fulltextMimetyp application/pdf

Person

Ahmed, Mobyen UddinLoutfi, Amy

Sök vidare i DiVA

Av författaren/redaktören
Ahmed, Mobyen UddinLoutfi, Amy
Av organisationen
Institutionen för naturvetenskap och teknik
SignalbehandlingDatorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1750 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1482 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf