To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Improvement in the Observation Model for Monte Carlo Localization
Automatic Control Group at Computer Science, Electrical and Space Engineering, Luleå, University of Technology, Luleå, Sweden.ORCID-id: 0000-0001-6868-2210
Automatic Control Group at Computer Science, Electrical and Space Engineering, Luleå, University of Technology, Luleå, Sweden.
Automatic Control Group at Computer Science, Electrical and Space Engineering, Luleå, University of Technology, Luleå, Sweden.ORCID-id: 0000-0002-0079-9049
2014 (engelsk)Inngår i: Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO / [ed] Joaquim Filipe, Oleg Gusikhin, Kurosh Madani and Jurek Sasiadek, SciTePress , 2014, s. 498-505Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Accurate and robust mobile robot localization is very important in many robot applications. Monte Carlo localization (MCL) is one of the robust probabilistic solutions to robot localization problems. The sensor model used in MCL directly influence the accuracy and robustness of the pose estimation process. The classical beam models assumes independent noise in each individual measurement beam at the same scan. In practice, the noise in adjacent beams maybe largely correlated. This will result in peaks in the likelihood measurement function. These peaks leads to incorrect particles distribution in the MCL. In this research, an adaptive sub-sampling of the measurements is proposed to reduce the peaks in the likelihood function. The sampling is based on the complete scan analysis. The specified measurement is accepted or not based on the relative distance to other points in the 2D point cloud. The proposed technique has been implemented in ROS and stage simulator. The result shows that selecting suitable value of distance between accepted scans can improve the localization error and reduce the required computations effectively.

sted, utgiver, år, opplag, sider
SciTePress , 2014. s. 498-505
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-82183DOI: 10.5220/0005065604980505ISBN: 978-989-758-040-6 (tryckt)OAI: oai:DiVA.org:oru-82183DiVA, id: diva2:1433168
Tilgjengelig fra: 2020-05-29 Laget: 2020-05-29 Sist oppdatert: 2020-08-26bibliografisk kontrollert

Open Access i DiVA

An Improvement in the Observation Model for Monte Carlo Localization(558 kB)210 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 558 kBChecksum SHA-512
d8f8bd3e36438e499831a8cf665771f469181d89f8e67fba2a85924778e8e476e79d1d0ceebff6ba7fb27c9c4b29c0dd57e4956164e08192e95f8b4989f14bc8
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Alhashimi, AnasHostettler, RolandGustafsson, Thomas

Søk i DiVA

Av forfatter/redaktør
Alhashimi, AnasHostettler, RolandGustafsson, Thomas

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 227 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 293 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf