To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling and Calibrating Triangulation Lidars for Indoor Applications
Control Engineering Group, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden; Department of Computer Engineering, University of Baghdad, Baghdad, Iraq.ORCID-id: 0000-0001-6868-2210
Department of Information Engineering, University of Padova, Padova, Italy.
Control Engineering Group, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.ORCID-id: 0000-0002-4310-7938
Control Engineering Group, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.ORCID-id: 0000-0002-0079-9049
2018 (engelsk)Inngår i: Informatics in Control, Automation and Robotics: 13th International Conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016 / [ed] Kurosh Madani, Dimitri Peaucelle, Oleg Gusikhin, Springer, 2018, s. 342-366Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

We present an improved statistical model of the measurement process of triangulation Light Detection and Rangings (Lidars) that takes into account bias and variance effects coming from two different sources of uncertainty: (i) mechanical imperfections on the geometry and properties of their pinhole lens - CCD camera systems, and (ii) inaccuracies in the measurement of the angular displacement of the sensor due to non ideal measurements from the internal encoder of the sensor. This model extends thus the one presented in [2] by adding this second source of errors. Besides proposing the statistical model, this chapter considers: (i) specialized and dedicated model calibration algorithms that exploit Maximum Likelihood (ML)/Akaike Information Criterion (AIC) concepts and that use training datasets collected in a controlled setup, and (ii) tailored statistical strategies that use the calibration results to statistically process the raw sensor measurements in non controlled but structured environments where there is a high chance for the sensor to be detecting objects with flat surfaces (e.g., walls). These newly proposed algorithms are thus specially designed and optimized for inferring precisely the angular orientation of the Lidar sensor with respect to the detected object, a feature that is beneficial especially for indoor navigation purposes.

sted, utgiver, år, opplag, sider
Springer, 2018. s. 342-366
Serie
Lecture Notes in Electrical Engineering, ISSN 1876-1100, E-ISSN 1876-1119 ; 430
Emneord [en]
Maximum likelihood, Least squares, Statistical inference, Distance mapping sensors, Lidar, Nonlinear system, AIC
HSV kategori
Forskningsprogram
Reglerteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-82177DOI: 10.1007/978-3-319-55011-4_17ISBN: 978-3-319-55010-7 (tryckt)ISBN: 978-3-319-55011-4 (digital)OAI: oai:DiVA.org:oru-82177DiVA, id: diva2:1433178
Konferanse
13th International Conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016
Tilgjengelig fra: 2020-05-29 Laget: 2020-05-29 Sist oppdatert: 2022-10-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Alhashimi, Anas

Søk i DiVA

Av forfatter/redaktør
Alhashimi, AnasVaragnolo, DamianoGustafsson, Thomas

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 167 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf