To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-2504-2488
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-8658-2985
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-6868-2210
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Vise andre og tillknytning
2021 (engelsk)Inngår i: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), IEEE, 2021, s. 5462-5469Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper presents the accurate, highly efficient, and learning-free method CFEAR Radarodometry for large-scale radar odometry estimation. By using a filtering technique that keeps the k strongest returns per azimuth and by additionally filtering the radar data in Cartesian space, we are able to compute a sparse set of oriented surface points for efficient and accurate scan matching. Registration is carried out by minimizing a point-to-line metric and robustness to outliers is achieved using a Huber loss. We were able to additionally reduce drift by jointly registering the latest scan to a history of keyframes and found that our odometry method generalizes to different sensor models and datasets without changing a single parameter. We evaluate our method in three widely different environments and demonstrate an improvement over spatially cross-validated state-of-the-art with an overall translation error of 1.76% in a public urban radar odometry benchmark, running at 55Hz merely on a single laptop CPU thread.

sted, utgiver, år, opplag, sider
IEEE, 2021. s. 5462-5469
Serie
IEEE International Conference on Intelligent Robots and Systems. Proceedings, ISSN 2153-0858, E-ISSN 2153-0866
Emneord [en]
Localization SLAM Mapping Radar
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-94463DOI: 10.1109/IROS51168.2021.9636253ISI: 000755125504051ISBN: 9781665417143 (digital)ISBN: 9781665417150 (tryckt)OAI: oai:DiVA.org:oru-94463DiVA, id: diva2:1595903
Konferanse
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021), Prague, Czech Republic, (Online Conference), September 27 - October 1, 2021
Forskningsfinansiär
Knowledge FoundationEU, Horizon 2020, 732737Tilgjengelig fra: 2021-09-20 Laget: 2021-09-20 Sist oppdatert: 2024-01-02bibliografisk kontrollert
Inngår i avhandling
1. Robust large-scale mapping and localization: Combining robust sensing and introspection
Åpne denne publikasjonen i ny fane eller vindu >>Robust large-scale mapping and localization: Combining robust sensing and introspection
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The presence of autonomous systems is rapidly increasing in society and industry. To achieve successful, efficient, and safe deployment of autonomous systems, they must be navigated by means of highly robust localization systems. Additionally, these systems need to localize accurately and efficiently in realtime under adverse environmental conditions, and within considerably diverse and new previously unseen environments.

This thesis focuses on investigating methods to achieve robust large-scale localization and mapping, incorporating robustness at multiple stages. Specifically, the research explores methods with sensory robustness, utilizing radar, which exhibits tolerance to harsh weather, dust, and variations in lighting conditions. Furthermore, the thesis presents methods with algorithmic robustness, which prevent failures by incorporating introspective awareness of localization quality. This thesis aims to answer the following research questions:

How can radar data be efficiently filtered and represented for robust radar odometry? How can accurate and robust odometry be achieved with radar? How can localization quality be assessed and leveraged for robust detection of localization failures? How can self-awareness of localization quality be utilized to enhance the robustness of a localization system?

While addressing these research questions, this thesis makes the following contributions to large-scale localization and mapping: A method for robust and efficient radar processing and state-of-the-art odometry estimation, and a method for self-assessment of localization quality and failure detection in lidar and radar localization. Self-assessment of localization quality is integrated into robust systems for large-scale Simultaneous Localization And Mapping, and rapid global localization in prior maps. These systems leverage self-assessment of localization quality to improve performance and prevent failures in loop closure and global localization, and consequently achieve safe robot localization.

The methods presented in this thesis were evaluated through comparative assessments of public benchmarks and real-world data collected from various industrial scenarios. These evaluations serve to validate the effectiveness and reliability of the proposed approaches. As a result, this research represents a significant advancement toward achieving highly robust localization capabilities with broad applicability.

sted, utgiver, år, opplag, sider
Örebro: Örebro University, 2023. s. 72
Serie
Örebro Studies in Technology, ISSN 1650-8580 ; 100
Emneord
SLAM, Localization, Robustness, Radar
HSV kategori
Identifikatorer
urn:nbn:se:oru:diva-107548 (URN)9789175295244 (ISBN)
Disputas
2023-10-31, Örebro universitet, Långhuset, Hörsal L2, Fakultetsgatan 1, Örebro, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-08-15 Laget: 2023-08-15 Sist oppdatert: 2024-01-19bibliografisk kontrollert

Open Access i DiVA

CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry(5176 kB)663 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5176 kBChecksum SHA-512
9057543fe17164175638112af586210b728e51d89f9223de6ac73dfab7eec6e715d2d0c6526458d22be42810376311f5b7d6c9a81f048d0dbea637b33990dd3a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstFree full text in ArXiv

Person

Adolfsson, DanielMagnusson, MartinAlhashimi, AnasLilienthal, AchimAndreasson, Henrik

Søk i DiVA

Av forfatter/redaktør
Adolfsson, DanielMagnusson, MartinAlhashimi, AnasLilienthal, AchimAndreasson, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 663 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 595 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf