To Örebro University

oru.seÖrebro universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Lidar-Level Localization With Radar? The CFEAR Approach to Accurate, Fast, and Robust Large-Scale Radar Odometry in Diverse Environments
Örebro universitet, Institutionen för naturvetenskap och teknik. (Mobile Robotics and Olfaction Lab, AASS Research Center)ORCID-id: 0000-0003-2504-2488
Örebro universitet, Institutionen för naturvetenskap och teknik. (Mobile Robotics and Olfaction Lab, AASS Research Center)ORCID-id: 0000-0001-8658-2985
Örebro University, Örebro, Sweden; Computer Engineering Department, University of Baghdad, Baghdad, Iraq. (Mobile Robotics and Olfaction Lab, AASS Research Center)ORCID-id: 0000-0001-6868-2210
Örebro universitet, Institutionen för naturvetenskap och teknik. (Mobile Robotics and Olfaction Lab, AASS Research Center)ORCID-id: 0000-0003-0217-9326
Vise andre og tillknytning
2023 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 39, nr 2, s. 1476-1495Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments—outdoors, from urban to woodland, and indoors in warehouses and mines—without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach conservative filtering for efficient and accurate radar odometry (CFEAR), we present an in-depth investigation on a wider range of datasets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar simultaneous localization and mapping (SLAM) and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5 Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160 Hz.

sted, utgiver, år, opplag, sider
IEEE, 2023. Vol. 39, nr 2, s. 1476-1495
Emneord [en]
Radar, Sensors, Spinning, Azimuth, Simultaneous localization and mapping, Estimation, Location awareness, Localization, radar odometry, range sensing, SLAM
HSV kategori
Forskningsprogram
Datalogi; Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-103116DOI: 10.1109/tro.2022.3221302ISI: 000912778500001Scopus ID: 2-s2.0-85144032264OAI: oai:DiVA.org:oru-103116DiVA, id: diva2:1727222
Tilgjengelig fra: 2023-01-16 Laget: 2023-01-16 Sist oppdatert: 2023-10-18
Inngår i avhandling
1. Robust large-scale mapping and localization: Combining robust sensing and introspection
Åpne denne publikasjonen i ny fane eller vindu >>Robust large-scale mapping and localization: Combining robust sensing and introspection
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The presence of autonomous systems is rapidly increasing in society and industry. To achieve successful, efficient, and safe deployment of autonomous systems, they must be navigated by means of highly robust localization systems. Additionally, these systems need to localize accurately and efficiently in realtime under adverse environmental conditions, and within considerably diverse and new previously unseen environments.

This thesis focuses on investigating methods to achieve robust large-scale localization and mapping, incorporating robustness at multiple stages. Specifically, the research explores methods with sensory robustness, utilizing radar, which exhibits tolerance to harsh weather, dust, and variations in lighting conditions. Furthermore, the thesis presents methods with algorithmic robustness, which prevent failures by incorporating introspective awareness of localization quality. This thesis aims to answer the following research questions:

How can radar data be efficiently filtered and represented for robust radar odometry? How can accurate and robust odometry be achieved with radar? How can localization quality be assessed and leveraged for robust detection of localization failures? How can self-awareness of localization quality be utilized to enhance the robustness of a localization system?

While addressing these research questions, this thesis makes the following contributions to large-scale localization and mapping: A method for robust and efficient radar processing and state-of-the-art odometry estimation, and a method for self-assessment of localization quality and failure detection in lidar and radar localization. Self-assessment of localization quality is integrated into robust systems for large-scale Simultaneous Localization And Mapping, and rapid global localization in prior maps. These systems leverage self-assessment of localization quality to improve performance and prevent failures in loop closure and global localization, and consequently achieve safe robot localization.

The methods presented in this thesis were evaluated through comparative assessments of public benchmarks and real-world data collected from various industrial scenarios. These evaluations serve to validate the effectiveness and reliability of the proposed approaches. As a result, this research represents a significant advancement toward achieving highly robust localization capabilities with broad applicability.

sted, utgiver, år, opplag, sider
Örebro: Örebro University, 2023. s. 72
Serie
Örebro Studies in Technology, ISSN 1650-8580 ; 100
Emneord
SLAM, Localization, Robustness, Radar
HSV kategori
Identifikatorer
urn:nbn:se:oru:diva-107548 (URN)9789175295244 (ISBN)
Disputas
2023-10-31, Örebro universitet, Långhuset, Hörsal L2, Fakultetsgatan 1, Örebro, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-08-15 Laget: 2023-08-15 Sist oppdatert: 2024-01-19bibliografisk kontrollert

Open Access i DiVA

Lidar-level localization with radar? The CFEAR approach to accurate, fast and robust large-scale radar odometry in diverse environments(14299 kB)243 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 14299 kBChecksum SHA-512
0375a2fa68cc6bcaee5e062484d83e2855659d6a3dbb7ad8ea9ca0ff54e9fe5d948602cfe73c28b0202357a9ff901bcd1c213ad40ff739f1087e450d6e888c03
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusFree full text in ArXiv

Person

Adolfsson, DanielMagnusson, MartinLilienthal, AchimAndreasson, Henrik

Søk i DiVA

Av forfatter/redaktør
Adolfsson, DanielMagnusson, MartinAlhashimi, AnasLilienthal, AchimAndreasson, Henrik
Av organisasjonen
I samme tidsskrift
IEEE Transactions on robotics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 243 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 629 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf