To Örebro University

oru.seÖrebro University Publications
Change search
Refine search result
45678910 301 - 350 of 1393
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 301.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    A framework for human-aware robot planning2008In: Tenth Scandinavian conference on artificial intelligence / [ed] A. Holst, P. Kreuger, P. Funk, Amsterdam: IOS press , 2008, p. 52-59Conference paper (Refereed)
    Abstract [en]

    Robots that share their workspace with humans, like household or service robots, need to take into account the presence of humans when planning their actions. In this paper, we present a framework for human-aware planning in which we consider three kinds of human-robot interaction. We focus in particular on the core module of the framework, a human-aware planner that generates a sequence of actions for a robot, taking into account the status of the environment, the goals of the robot and the forecasted plan of the human. We present a first realization of this planner, together with two simple experiments that demonstrate the feasibility of our approach.

  • 302.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    A human-aware robot task planner2009In: Proceedings of the 19th international conference on automated planning and scheduling, ICAPS 2009 / [ed] Alfonso Gerevini, Adele Howe, Amedeo Cesta, Ioannis Refanidis, Menlo Park: AAAI press , 2009, p. 58-65Conference paper (Refereed)
    Abstract [en]

    The growing presence of household robots in inhabited environments arises the need for new robot task planning techniques. These techniques should take into consideration not only the actions that the robot can perform or unexpected external events, but also the actions performed by a human sharing the same environment, in order to improve the cohabitation of the two agents, e.g., by avoiding undesired situations for the human. In this paper, we present a human-aware planner able to address this problem. This planner supports alternative hypotheses of the human plan, temporal duration for the actions of both the robot and the human, constraints on the interaction between robot and human, partial goal achievement and, most importantly, the possibility to use observations of human actions in the policy generated for the robot. The planner has been tested as a standalone component and in conjunction with our framework for human-robot interaction in a real environment.

  • 303.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    Human-aware planning for robots embedded in ambient ecologies2012In: Pervasive and Mobile Computing, ISSN 1574-1192, E-ISSN 1873-1589, Vol. 8, no 4, p. 542-561Article in journal (Refereed)
    Abstract [en]

    We address the issue of human-robot cohabitation in smart environments. In particular, the presence of humans in a robot's work space has a profound influence on how the latter should plan its actions. We propose the use of Human-Aware Planning, an approach in which the robot exploits the capabilities of a sensor-rich environment to obtain information about the (current and future) activities of the people in the environment, and plans its tasks accordingly.

    Here, we formally describe the planning problem behind our approach, we analyze its complexity and we detail the algorithm of our planner. We then show two application scenarios that could benefit from the techniques described. The first scenario illustrates the applicability of human-aware planning in a domestic setting, while the second one illustrates its use for a robotic helper in a hospital. Finally, we present a five hour-long test run in a smart home equipped with real sensors, where a cleaning robot has been deployed and where a human subject is acting. This test run in a real setting is meant to demonstrate the feasibility of our approach to human-robot interaction.

  • 304.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    Human-aware task planning: an application to mobile robots2010In: ACM transactions on interactive intelligent systems, ISSN 2157-6904, Vol. 1, no 2, p. Article 15-Article in journal (Refereed)
    Abstract [en]

    Consider a house cleaning robot planning its activities for the day. Assume that the robot expects the human inhabitant to first dress, then have breakfast, and finally go out. Then, it should plan not to clean the bedroom while the human is dressing, and to clean the kitchen after the human has had breakfast. In general, robots operating in inhabited environments, like households and future factory floors, should plan their behavior taking into account the actions that will be performed by the humans sharing the same environment. This would improve human-robot cohabitation, for example, by avoiding undesired situations for the human. Unfortunately, current task planners only consider the robot's actions and unexpected external events in the planning process, and cannot accommodate expectations about the actions of the humans.

    In this article, we present a human-aware planner able to address this problem. Our planner supports alternative hypotheses of the human plan, temporal duration for the actions of both the robot and the human, constraints on the interaction between robot and human, partial goal achievement and, most importantly, the possibility to use observations of human actions in the policy generated for the robot. Our planner has been tested both as a stand-alone component and within a full framework for human-robot interaction in a real environment.

  • 305.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    Human-aware task planning for mobile robots2009In: Proceedings of the 5th international conference on advanced robotics, ICAR 2009, New York: IEEE conference proceedings, 2009, p. 172-178Conference paper (Refereed)
    Abstract [en]

    Robots that share their workspace with people, like household or service robots, need to take into account the presence of humans when planning their actions. In this paper, we present a framework for human-aware planning that would make the robots capable of performing their tasks without interfering with the user in his every day life. We focus in particular on the core module of the framework, a humanaware planner that generates a sequence of actions for a robot, taking into account the state of the environment and the goals of the robot, together with a set of forecasted possible plans of the human. We describe the planner and its relations to other system components like a plan recognizer, and present a series of experiments performed with a household robot in a small apartment.

  • 306.
    Cirillo, Marcello
    et al.
    Örebro University, School of Science and Technology.
    Lanzellotto, Federica
    Roma 3 University, Rome, Italy.
    Pecora, Federico
    Örebro University, School of Science and Technology.
    Saffiotti, Alessandro
    Örebro University, School of Science and Technology.
    Monitoring domestic activities with temporal constraints and components2009In: Intelligent environments 2009 / [ed] V. Callaghan, A. Kameas, A. Reyes, D. Royo, M. Weber, Amsterdam: IOS Press, 2009, p. 117-124Conference paper (Refereed)
    Abstract [en]

    Intelligent environments are increasingly rich in ubiquitous sensing capabilities that can be leveraged to know which actions a user is engaged in at any given moment in time. The ability of an intelligent environment to recognize a high-level plan of activities performed by the user in a smart home would allow to construct proactive services, such as reminding, forecasting and providing timely physical support. This article proposes an approach to human activity recognition based on temporal planning. The approach leverages on one hand the ubiquitous sensors provided by the PEIS-Home, a sensor-rich intelligent environment, and, on the other hand, the temporal representation and reasoning capabilities of OMPS, a constraint-based temporal planning and scheduling framework.

  • 307.
    Cocchi, Ilaria
    et al.
    Department of Biomedical Sciences, University of Sassari, Sassari, Italy; DIAG, Sapienza University of Rome, Rome, Italy.
    Figari, Giulio
    GPEM Srl, Alghero, Italy.
    Valeri, Nicolo
    Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
    Paolini, Gabriele
    GPEM Srl, Alghero, Italy.
    Della Croce, Ugo
    Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
    Cereatti, Andrea
    Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
    Pantzar-Castilla, Evelina
    Örebro University, School of Medical Sciences. Dept. Orthopedics.
    Magnuson, Anders
    Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.
    Riad, Jacques
    Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden; Dept. Orthopedics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept. Orthopedics, Skaraborg Hospital, Skövde, Sweden.
    A 2D markerless gait analysis protocol to estimate the sagittal joint kinematics of children with cerebral palsy2019In: 2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT), IEEE , 2019, p. 192-196Conference paper (Refereed)
    Abstract [en]

    The quantitative analysis of human movement provides a deep understanding of the pathophysiological mechanisms underlying locomotion. The traditional marker-based stereo-photogrammetric systems and clinical protocols for motion analysis, although very accurate, have a number of disadvantages that limit their use to large clinical facilities. Among the disadvantages is the use of markers on the body, which can make the patient uneasy, especially children with cerebral palsy. To overcome the limitations of the marker-based stereophotogrammetry and to guarantee accuracy, reproducibility and usability of the measurement, a new markerless protocol is introduced, which, estimates the lower limb sagittal joint kinematics from RGB video images combined with measurements from an infrared depth (D) sensor. The validity of the markerless protocol is demonstrated by comparing the estimates obtained, with those resulting from the application of a common protocol applied to marker-based measurements. The joint kinematics patterns obtained from the ML protocol and the one of reference showed a good agreement after removing the angular offsets with RMSD values between 3.5 and 5 degrees for all joints and R values between 0.8 and 1. The interpretation of the differences found in this study should be treated carefully since they are the results not only of different measurement systems but also of different protocols (2D vs 3D). The proposed protocol for the estimation of the 2D joint kinematics of the lower limbs from RGB-D sensor data is a promising low-cost and simple solution for monitoring children with cerebral palsy.

  • 308.
    Conti, Mauro
    et al.
    Department of Mathematics, University of Padua, Padua, Italy.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.
    Lesyk, Viktor
    DTU Compute, Technical University of Denmark (DTU), Kgs. Lyngby, Denmark; Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro, Sweden.
    A Survey of Man In The Middle Attacks2016In: IEEE Communications Surveys and Tutorials, E-ISSN 1553-877X, Vol. 18, no 3, p. 2027-2051Article in journal (Refereed)
    Abstract [en]

    The Man-In-The-Middle (MITM) attack is one of the most well known attacks in computer security, representing one of the biggest concerns for security professionals. MITM targets the actual data that flows between endpoints, and the confidentiality and integrity of the data itself. In this paper, we extensively review the literature on MITM to analyse and categorize the scope of MITM attacks, considering both a reference model, such as the open systems interconnection (OSI) model, as well as two specific widely used network technologies, i.e., GSM and UMTS. In particular, we classify MITM attacks based on several parameters, like location of an attacker in the network, nature of a communication channel, and impersonation techniques. Based on an impersonation techniques classification, we then provide execution steps for each MITM class. We survey existing countermeasures and discuss the comparison among them. Finally, based on our analysis, we propose a categorisation of MITM prevention mechanisms, and we identify some possible directions for future research.

  • 309.
    Coradeschi, Silvia
    et al.
    Örebro University, School of Science and Technology.
    Cortellessa, GabriellaInstitute of Cognitive Science and Technology, National Research Council of Italy, Rome, Italy.Kristoffersson, AnnicaÖrebro University, School of Science and Technology.Loutfi, AmyÖrebro University, School of Science and Technology.
    Proceedings of the Ro-man 2012 Workshop on Social Robotics Telepresence2012Conference proceedings (editor) (Other academic)
  • 310.
    Coradeschi, Silvia
    et al.
    School of Science and Technology, Örebro University, Örebro, Sweden.
    Cortellessa, GabriellaCNR - National Research Council of Italy, Istituto di Scienze e Tecnologie della Cognizione, Rome, Italy.Kristoffersson, AnnicaÖrebro University, School of Science and Technology.Loutfi, AmyÖrebro University, School of Science and Technology.Severinson Eklundh, KerstinCI Group, CSC, KTH Royal Institute of Technology, Stockholm, Sweden.
    Proceedings of the 2011 HRI Workshop on Social Robotic Telepresence2011Conference proceedings (editor) (Other academic)
  • 311.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Driankov, Dimiter
    Örebro University, Department of Technology.
    Karlsson, Lars
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Fuzzy anchoring2001In: The 10th IEEE international conference on fuzzy systems, 2001, p. 111-114Conference paper (Refereed)
    Abstract [en]

    An intelligent physical agent must incorporate motor and perceptual processes to interface with the physical world, and abstract cognitive processes to reason about the world and the options available. One crucial aspect of incorporating cognitive processes into a physically embedded reasoning system is the integration between the symbols used by the reasoning processes to denote physical objects, and the perceptual data corresponding to these objects. We treat this integration aspect by proposing a fuzzy computational theory of anchoring. Anchoring is the process of creating and maintaining the correspondence between symbols and percepts that refer to the same physical objects. Modeling this process using fuzzy set-theoretic notions enables dealing with perceptual data that can be affected by uncertainty/imprecision and imprecise/vague linguistic descriptions of objects

  • 312.
    Coradeschi, Silvia
    et al.
    Örebro University, School of Science and Technology.
    Kristoffersson, Annica
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Von Rump, Stephen
    Cesta, Amedeo
    Cortellessa, Gabriella
    Gonzalez, Javier
    Towards a methodology for longitudinal evaluation of social robotic telepresence for elderly2011In: 1st Workshop on Social Robotic Telepresence at HRI 2011, 2011Conference paper (Refereed)
    Abstract [en]

    This paper describes a methodology for performing longitudinal evaluations when a social robotic telepresence system is deployed in realistic environments. This work is the core of an Ambient Assisted Living Project called ExCITE, Enabling Social Interaction Through Telepresence. The ExCITE project is geared towards an elderly audience and has as aim to increase social interaction among elderly, their family and healthcare services by using robotic telepresence. The robotic system used in the project is called the Giraff robot and over a three year period, prototypes of this platform are deployed at a number of test-sites in different European countries where user feedback is collected and fedback into the refinement of the prototype. In this paper, we discuss the methodology of ExCITE in particular relation to other methodologies for longitudinal evaluation. The paper also provides a discussion of the possible pitfalls and risks in performing longitudinal studies of this nature particularly as they relate to social robotic telepresence technologies.

    Download full text (pdf)
    fulltext
  • 313.
    Coradeschi, Silvia
    et al.
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    A review of Past and Future Trends in Perceptual Anchoring2008In: Tools in Artificial Intelligence, Vienna: I-Tech Eduacation and Publishing , 2008Chapter in book (Other academic)
    Download full text (pdf)
    FULLTEXT01
  • 314.
    Coradeschi, Silvia
    et al.
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Kristoffersson, Annica
    Örebro University, School of Science and Technology.
    Cortellessa, Gabriella
    Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Istituto di Scienze e Tecnologie della Cognizione (ISTC-CNR), Rome, Italy.
    Severinson Eklundh, Kerstin
    KTH, Royal Institute of Technology, Stockholm, Sweden.
    Social robotic telepresence2011In: the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2011).HRI, ACM Digital Library , 2011, p. 5-6Conference paper (Refereed)
    Download (pdf)
    sammanfattning
  • 315.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    An introduction to the anchoring problem2003In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 43, no 2-3, p. 85-96Article in journal (Refereed)
    Abstract [en]

    Anchoring is the problem of connecting, inside an artificial system, symbols and sensor data that refer to the same physical objects in the external world. This problem needs to be solved in any robotic system that incorporates a symbolic component. However, it is only recently that the anchoring problem has started to be addressed as a problem per se, and a few general solutions have begun to appear in the literature. This paper introduces the special issue on perceptual anchoring of the Robotics and Autonomous Systems journal. Our goal is to provide a general overview of the anchoring problem, and to highlight some of its subtle points

  • 316.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Anchoring symbols to sensor data: preliminary report2000In: Proceedings of the 17th AAAI conference, 2000, p. 129-135Conference paper (Refereed)
    Abstract [en]

    Anchoring is the process of creating and maintaining the correspondence between symbols and percepts that refer to the same physical objects. Although this process must necessarily be present in any physically embedded system that includes a symbolic component (e.g., an autonomous robot), no systematic study of anchoring as a problem per se has been reported in the literature on intelligent systems. In this paper, we propose a domain-independent definition of the anchoring problem, and identify its three basic functionalities: find, reacquire, and track. We illustrate our definition on two systems operating in two different domains: an unmanned airborne vehicle for traffic surveillance; and a mobile robot for office navigation.

  • 317.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Anchoring symbols to vision data by fuzzy logic1999In: Symbolic and quantitative approaches to reasoning and uncertainty: European conference, ECSQARU '99 : proceedings / [ed] Anthony Hunter, Simon Parsons, Berlin/Heidelberg: Springer Berlin/Heidelberg, 1999, p. 104-115Conference paper (Refereed)
    Abstract [en]

    Intelligent agents embedded in physical environments need the ability to connect, or anchor, the symbols used to perform abstract reasoning to the physical entities which these symbols refer to. Anchoring must rely on perceptual data which is inherently affected by uncertainty. We propose an anchoring technique based on the use of fuzzy sets to represent uncertainty, and of degree of subset-hood to compute the partial match between signatures of objects. We show examples where we use this technique to allow a deliberative system to reason about the objects (cars) observed by a vision system embarked in an unmanned helicopter, in the framework of the WITAS project.

  • 318.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Perceptual anchoring: a key concept for plan execution in embedded systems2002In: Advances in Plan-Based Control of Robotic Agents / [ed] Michael Beetz, Joachim Hertzberg, Malik Ghallab, Martha E. Pollack, 2002, Vol. 2466, p. 97-126Conference paper (Refereed)
    Abstract [en]

    Anchoring is the process of creating and maintaining the correspondence between symbols and percepts that refer to the same physical objects. This process must necessarily be present in any physically embedded system that includes a symbolic component, for instance, in an autonomous robot that uses a planner to generate strategic decisions. However, no systematic study of anchoring as a problem per se has been reported in the literature on intelligent systems. In this paper, we advocate for the need for a domain-independent framework to deal with the anchoring problem, and we report some initial steps in this direction. We illustrate our arguments and framework by showing experiments performed on a real mobile robot

  • 319.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Perceptual anchoring of symbols for action2001In: Proceedings of the 17th IJCAI, 2001, p. 407-412Conference paper (Refereed)
    Abstract [en]

    Anchoring is the process of creating and maintaining the correspondence between symbols and percepts that refer to the same physical objects. Although this process must necessarily be present in any symbolic reasoning system embedded in a physical environment (e.g., an autonomous robot), the systematic study of anchoring as a clearly separated problem is just in its initial phase. In this paper we focus on the use of symbols in actions and plans and the consequences this has for anchoring. In particular we introduce action properties and partial matching of objects descriptions. We also consider the use of indefinite references in the context of action. The use of our formalism is exemplified in a mobile robotic domain

  • 320.
    Coradeschi, Silvia
    et al.
    Örebro University, Department of Technology.
    Saffiotti, Alessandro
    Örebro University, Department of Technology.
    Perceptual anchoring with indefinite descriptions2003Conference paper (Refereed)
    Abstract [en]

    Anchoring is the problem of how to connect, inside an artificial system, the symbol-level and signal-level representations of the same physical object. In most previous work on anchoring, symbol-level representations were meant to denote one specific object, like 'the red pen p22'. These are also called definite descriptions. In this paper, we study anchoring in the case of indefinite descriptions, like `a red pen x'. A key point of our study is that anchoring with an indefinite description involves, in general, the selection of one object among several perceived objects that satisfy that description. We analyze several strategies to perform object selection, and compare them with the problem of action selection in autonomous embedded agents.

  • 321.
    Corazza, Junior
    Örebro University, School of Science and Technology.
    Impact of applications on water consumption2022Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Water scarcity is a growing problem on Earth. One of the goals in Agenda 2030, whichall of the UN members adapted is to make clean water accessible by everyone and ensuresustainable water withdrawals. In order to take a step towards the solution, a companynamed Quandify has developed smart water meters to measure households’ water consumptionwhich can be installed by anyone.In this bachelor’s thesis, the author collaborates with Quandify to develop a proofof concept (POC) to investigate if it was possible to create a mobile phone applicationthat could help residents reduce their water consumption. The author uses state of artsuggestions in persuasive technology literature and usability heuristics for user interactiondesign and implements it into the application to increase the chance of user behaviourchange towards water consumption.The result is a mobile phone application where the users get inspiration and tips onhow to reduce their water consumption and lets the users see their water consumptionin real-time. The report also includes a small POC user study to rate the mobile phoneapplication with respect to usability heuristics.

    Download full text (pdf)
    fulltext
  • 322. Cortellessa, Gabriella
    et al.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Pecora, Federico
    Örebro University, School of Science and Technology.
    An on-going evaluation of domestic robots2008In: Robotic helpers: user interaction, interfaces and companions in assistive and therapy robotics, 2008, p. 87-91Conference paper (Refereed)
    Abstract [en]

    In this position paper we describe an on-going effort to provide an in-depth and cross-cultural evaluation of how elderly users perceive robotic systems for domestic cognitive support. Our work is grounded on two implemented smarthome prototypes, namely the RoboCare Smart Home developed in Italy, and the PEIS Home developed in Sweden. The former project has provided a testbed for an a-posteriori evaluation of smart home technology with Italian user groups. The presence in Sweden of the PEIS Home, a system which shares numerous commonalities with the RoboCare Smart Home, gives us the opportunity to extend these results by (1) providing a cross-cultural perspective on the perception of smart home technology, and (2) lay the foundations for a live, Wizard of Oz based evaluation within the PEIS Home.

     

  • 323. Cortellessa, Gabriella
    et al.
    Scopelliti, Massimiliano
    Tiberio, Lorenza
    Koch Svedberg, Gion
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Pecora, Federico
    Örebro University, School of Science and Technology.
    A cross-cultural evaluation of domestic assistive robots2008In: AAAI fall symposium: technical report, v FS-08-02, American Association for Artificial Intelligence , 2008, p. 24-31Conference paper (Refereed)
    Abstract [en]

    This paper presents the first steps in a series of on-going user evaluations of intelligent environments for supporting elderly users at home. We specifically focus on a comparison of elderly perceptions of social assistive domestic robots between Italian and Swedish user groups. The evaluation was carried out in Rome, Italy and O¨ rebro, Sweden, including surrounding towns. The results, obtained through a videobased methodology, highlight the variety in level of appreciation of domestic robots for elderly care as it relates to a number of aspects of culture which are not necessarily trivial to identify. Our results suggest some specific factors as important for interpreting the difference in perception, e.g., the user’s acquaintance with ICT (Information and Communication Technology) and the social policies implemented in the two countries. Also, the results show interesting commonalities, such as the general agreement among Swedish and Italian user groups on the physical aspect of the robot.

  • 324.
    d. C. Silva-Lopez, Lia Susana
    et al.
    Örebro University, School of Science and Technology.
    Broxvall, Mathias
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Karlsson, Lars
    Örebro University, School of Science and Technology.
    Towards configuration planning with partially ordered preferences: representation and results2015In: Künstliche Intelligenz, ISSN 0933-1875, E-ISSN 1610-1987, Vol. 9, no 2, p. 173-183Article in journal (Refereed)
    Abstract [en]

    Configuration planning for a distributed robotic system is the problem of how to configure the system over time in order to achieve some causal and/or information goals. A configuration plan specifies what components (sensor, actuator and computational devices), should be active at different times and how they should exchange information. However, not all plans that solve a given problem need to be equally good, and for that purpose it may be important to take preferences into account. In this paper we present an algorithm for configuration planning that incorporates general partially ordered preferences. The planner supports multiple preference categories, and hence it solves a multiple-objective optimization problem: for a given problem, it finds all possible valid, non-dominated configuration plans. The planner has been able to successfully cope with partial ordering relations between quantitative preferences in practically acceptable times, as shown in the empirical results. Preferences here are represented as c-semirings, and are used for establishing dominance of a solution over another in order to obtain a set of configuration plans that will constitute the solution of a configuration planning problem with partially ordered preferences. The dominance operators tested in this paper are Pareto and Lorenz dominance. Our solver considers one guiding heuristic for obtaining the first solution, and then switches to a dominance based monotonically decreasing heuristic used for pruning dominated partial configuration plans. In our empirical results, we perform a statistical study in the space of problem instances and establish families of problems for which our approach is computationally feasible.

  • 325.
    Dahlbom, Anders
    Örebro University, School of Science and Technology.
    Petri nets for situation recognition2011Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Situation recognition is a process with the goal of identifying a priori defined situations in a flow of data and information. The purpose is to aid decision makers with focusing on relevant information by filtering out situations of interest. This is an increasingly important and non trivial problem to solve since the amount of information in various decision making situations constantly grow. Situation recognition thus addresses the information gap, i.e. the problem of finding the correct information at the correct time. Interesting situations may also evolve over time and they may consist of multiple participating objects and their actions. This makes the problem even more complex to solve. This thesis explores situation recognition and provides a conceptualization and a definition of the problem, which allow for situations of partial temporal definition to be described. The thesis then focuses on investigating how Petri nets can be used for recognising situations. Existing Petri net based approaches for recognition have some limitations when it comes to fulfilling requirements that can be put on solutions to the situation recognition problem. An extended Petri net based technique that addresses these limitations is therefore introduced. It is shown that this technique can be as efficient as a rule based techniques using the Rete algorithm with extensions for explicitly representing temporal constraints. Such techniques are known to be efficient; hence, the Petri net based technique is efficient too. The thesis also looks at the problem of learning Petri net situation templates using genetic algorithms. Results points towards complex dynamic genome representations as being more suited for learning complex concepts, since these allow for promising solutions to be found more quickly compared with classical bit string based representations. In conclusion, the extended Petri net based technique is argued to offer a viable approach for situation recognition since it: (1) can achieve good recognition performance, (2) is efficient with respect to time, (3) allows for manually constructed situation templates to be improved and (4) can be used with real world data to find real world situations.

    Download full text (pdf)
    webbfil
    Download (pdf)
    omslag
    Download (pdf)
    spikblad
    Download (pdf)
    Errata
  • 326.
    Dahlgren Lindström, Adam
    et al.
    Umeå University, Faculty of Science and Technology, Department of Computing Science, Umeå, Sweden.
    Sam Abraham, Savitha
    Örebro University, School of Science and Technology.
    CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning2022In: Neural-Symbolic Learning and Reasoning 2022: Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2022) as part of the 2nd International Joint Conference on Learning & Reasoning (IJCLR 2022) Cumberland Lodge, Windsor Great Park, United Kingdom, September 28-30, 2022 / [ed] Artur d'Avila Garcez; Ernesto Jiménez-Ruiz, Technical University of Aachen , 2022, Vol. 3212, p. 155-170Conference paper (Refereed)
    Abstract [en]

    We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving.

    Download full text (pdf)
    CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning
  • 327.
    Dai, Xiaoxia
    et al.
    School of Computing Science, Zhejiang University City College, Hangzhou, People’s Republic of China.
    Zhang, Chengwei
    School of Computing Science, Zhejiang University City College, Hangzhou, People’s Republic of China.
    Zhang, Ye
    Örebro University, School of Science and Technology.
    Gulliksson, Mårten
    Örebro University, School of Science and Technology.
    Topology optimization of steady Navier-Stokes flow via a piecewise constant level set method2018In: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 57, no 6, p. 2193-2203Article in journal (Refereed)
    Abstract [en]

    This paper presents a piecewise constant level set method for the topology optimization of steady Navier- Stokes flow. Combining piecewise constant level set functions and artificial friction force, the optimization problem is formulated and analyzed based on a design variable. The topology sensitivities are computed by the adjoint method based on Lagrangian multipliers. In the optimization procedure, the piecewise constant level set function is updated by a new descent method, without the needing to solve the Hamilton-Jacobi equation. To achieve optimization, the piecewise constant level set method does not track the boundaries between the different materials but instead through the regional division, which can easily create small holes without topological derivatives. Furthermore, we make some attempts to avoid updating the Lagrangian multipliers and to deal with the constraints easily. The algorithm is very simple to implement, and it is possible to obtain the optimal solution by iterating a few steps. Several numerical examples for both two- and three-dimensional problems are provided, to demonstrate the validity and efficiency of the proposed method.

  • 328.
    Dandan, Kinan
    Örebro University, School of Science and Technology.
    Enabling Surface Cleaning Robot for Large Food Silo2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Working conditions in the dry cleaning and sanitation of confined interior spaces are often extreme, and workers need overall protection with tight clothing, helmets, face mask, earmuffs, and respirators. The environment is dirty, noisy with bad visibility and heavy with a high static work load. Dry cleaning is mainly practised in silos for grain, foodstuff and flour, etc. The inside of the silo is a hazardous environment due to many factors such as an unsafe oxygen level, engulfment, biological, mechanical, electrical, and atmospheric hazards. The requirements of the EU norms related to hygiene and food quality indicate that silos should be cleaned frequently and cleaning is obligatory after a silo is totally emptied. Therefore, there is an increased societal need for silo cleaning and a natural necessity to replace humans by robot manipulators in executing this risky and dangerous job.

    This thesis presents a new concept of a flexible crawling mechanism for an industrial food cleaning robot, which is evaluated from the viewpoint of the capability to work inside a large food silo, scanning the desired surface, and performing the cleaning task. The main research questions investigated in this thesis are about: how to select the most important characteristics in designing a robot to fulfil the surface cleaning operation of a large confined space; how the crawling movement affects the dynamic behaviour of the robot mechanism; how the cleaning process affects the dynamic behaviour of the robot mechanism; how to develop the control of the robot to realize the locomotion and the cleaning process.

    The structure of the robot and the cleaning technology are well defined after an overview of the existing technologies and solutions for cleaning large confined spaces. The robot design is based on a suspension and crawling system, using minimal actuators, where the force of gravity is well used to simplify the control system and to stabilise the robot. Further, the static and dynamic analysis of the mechanical system is studied. In addition, the control architecture of the system is performed, where the required sensors and control algorithm are given. A scale model testing has also been used to verify the locomotion of the concept, while simple controllers and algorithms are used to manage the motions of the prototype.

    List of papers
    1. SIRO: the silos surface cleaning robot concept
    Open this publication in new window or tab >>SIRO: the silos surface cleaning robot concept
    2013 (English)Conference paper, Published paper (Refereed)
    Abstract [en]

    A concept of a suspended robot for surface cleaning in silos is presented in this paper. The main requirements and limitations resulting from the specific operational conditions are discussed. Due to the large dimension of the silo as a confined space, specific kinematics of the robot manipulator is proposed. The major problems in its design are highlighted and an approach to resolve them is proposed. The suggested concept is a reasonable compromise between the basic contradicting factors in the design: small entrance and large surface of the confined space, suspension and stabilization of the robot

    Place, publisher, year, edition, pages
    IEEE conference proceedings, 2013
    National Category
    Robotics Computer Sciences
    Research subject
    Computer Science
    Identifiers
    urn:nbn:se:oru:diva-30689 (URN)10.1109/ICMA.2013.6617994 (DOI)000335375900111 ()2-s2.0-84887856459 (Scopus ID)978-1-4673-5560-5 (ISBN)
    Conference
    The 2013 IEEE International Conference on Mechatronics and Automation (ICMA), 4-7 aug. 2013, Takamatsu, Japan
    Available from: 2013-09-04 Created: 2013-09-04 Last updated: 2019-01-14Bibliographically approved
    2. Modeling and simulation of a silo cleaning robot
    Open this publication in new window or tab >>Modeling and simulation of a silo cleaning robot
    2014 (English)In: Mobile Service Robotics / [ed] Krazystof Kotowski, Mohammad O Tokhi and Gurvinder S Virk, Singapore: World Scientific, 2014, p. 627-635Conference paper, Published paper (Refereed)
    Abstract [en]

    A suspended robot for surface cleaning in silos is presented in this paper. Thesuggested concept is a reasonable compromise between the basic contradictingfactors in the design: small entrance and large surface of the confined space,suspension and stabilization of the robot. A dynamic study for the suspendedrobot is presented in this paper. A dynamic simulation in MSC ADAMS iscarried out to confirm the results from the theoretic study.

    Place, publisher, year, edition, pages
    Singapore: World Scientific, 2014
    Keywords
    Suspended robot, Cleaning robot, Dynamic model, Dynamic simulation
    National Category
    Computer Sciences
    Identifiers
    urn:nbn:se:oru:diva-35878 (URN)000342693100074 ()2-s2.0-85007393142 (Scopus ID)978-981-4623-34-6 (ISBN)
    Conference
    the 17th international conference on climbing and walking robots
    Available from: 2014-08-08 Created: 2014-08-07 Last updated: 2019-01-14Bibliographically approved
    3. Motion Control of Siro: The Silo Cleaning Robot
    Open this publication in new window or tab >>Motion Control of Siro: The Silo Cleaning Robot
    2015 (English)In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 12, article id 184Article in journal (Refereed) Published
    Abstract [en]

    Both the principle of operation and the motion-control system of a suspended robot for surface cleaning in silos are presented in this paper. The mechanical design is a reasonable compromise between basically contradictory factors in the design: the small entrance and the large surface of the confined space, and the suspension and the stabilization of the robot. The design consists of three main parts: a support unit, the cleaning robot and a cleaning mechanism. The latter two parts enter the silo in a folded form and, thereafter, the robot’s arms are spread in order to achieve stability during the cleaning process. The vertical movement of the robot is achieved via sequential crawling motions.

    The control system is divided into two separate subsystems, the robot’s control subsystem and a support-unit control subsystem, in order to facilitate different operational modes. The robot has three principle motion-control tasks: positioning the robot inside the silo, holding a vertical position during the cleaning process and a crawling movement.

    A scaled prototype of the robot has been implemented and tested to prove the concept, in order to make certain that the mechanical design suits the main functions of the robotic system, to realize the robot’s design in an industrial version and to test it in a realistic environment.

    Place, publisher, year, edition, pages
    InTech, 2015
    Keywords
    Suspended Robot, Silo Cleaning, Motion-control System, Control Algorithm
    National Category
    Computer and Information Sciences
    Research subject
    Computer Science
    Identifiers
    urn:nbn:se:oru:diva-47132 (URN)10.5772/61812 (DOI)000366622700002 ()2-s2.0-85027844643 (Scopus ID)
    Available from: 2015-12-18 Created: 2015-12-18 Last updated: 2023-12-08Bibliographically approved
    4. Dynamical Analysis of Silo Surface Cleaning Robot using Finite Element Method
    Open this publication in new window or tab >>Dynamical Analysis of Silo Surface Cleaning Robot using Finite Element Method
    2016 (English)In: International Journal of Mechanical Engineering & Technology (IJMET), ISSN 0976-6340, Vol. 07, no 01, p. 190-202, article id IJMET_07_01_020Article in journal (Refereed) Published
    Abstract [en]

    All mechanical systems are subjected to dynamic forces when they are in functioning. Thus a dynamical analysis has to be studied to determine the system behaviour. The vibration is of interest to study, due to its destructive or constructive effect. In the present era computational techniques are quite common and are very reliable as far as the modal analysis is concerned. In this work, the robot of silo cleaning is analysed for its vibration behaviour using finite element method (FEM).The robot was modelled and meshed in ANSYS. Modal analysis was conducted to calculate few initial natural frequencies. After carrying out the modal analysis, harmonic and transient analysis were done to see the response of the robot under dynamic loading. It was observed that robot is safe in its entire range of operation.

    Place, publisher, year, edition, pages
    India: IAME, 2016
    Keywords
    Silo, Suspended Robot, Finite Element, Modal Analysis, Dynamic Analysis
    National Category
    Computer Sciences
    Research subject
    Computer Science
    Identifiers
    urn:nbn:se:oru:diva-48415 (URN)
    Available from: 2016-02-19 Created: 2016-02-19 Last updated: 2022-08-05Bibliographically approved
    Download (png)
    Bild
    Download (pdf)
    Cover
    Download (pdf)
    Spikblad
  • 329.
    Dandan, Kinan
    et al.
    Örebro University, School of Science and Technology.
    Albitar, Houssam
    Örebro University, School of Science and Technology.
    Ananiev, Anani
    Örebro University, School of Science and Technology.
    Kalaykov, Ivan
    School of Science and Technology, Örebro University, Örebro, Sweden.
    Confined Spaces: Cleaning Techniques and Robot-based Surface Cleaning2016In: American Scientific Research Journal for Engineering, Technology and Science, ISSN 2313-4402, Vol. 22, no 1, p. 210-230Article in journal (Refereed)
    Abstract [en]

    The requirements of the working and safety norms demonstrate significant need of increased efficiency and improved working conditions in cleaning confined spaces. This paper presents an overview of the existing technologies and solutions for cleaning large confined spaces. A special attention is directed for cleaning interior surface of confined spaces used mainly for storing bulk materials or liquids, such as silos. The cleaning technologies for confined space depend on several aspects as the build-up material, the surface material, the ambient conditions. Four cleaning techniques are presented in this paper. The mechanisms and robots related to the studied problem are surveyed and evaluated from the viewpoint of their capability to clean interior surfaces. The dominating majority of the existing cleaning equipment is constructed to serve cleaning the entire volume of the respective confined space (silo), but not for cleaning the interior surface.

    Download full text (pdf)
    fulltext
  • 330.
    Dandan, Kinan
    et al.
    Örebro University, School of Science and Technology.
    Ananiev, Anani
    Örebro University, School of Science and Technology.
    Ivan, Kalaykov
    Örebro University, School of Science and Technology.
    SIRO: the silos surface cleaning robot concept2013Conference paper (Refereed)
    Abstract [en]

    A concept of a suspended robot for surface cleaning in silos is presented in this paper. The main requirements and limitations resulting from the specific operational conditions are discussed. Due to the large dimension of the silo as a confined space, specific kinematics of the robot manipulator is proposed. The major problems in its design are highlighted and an approach to resolve them is proposed. The suggested concept is a reasonable compromise between the basic contradicting factors in the design: small entrance and large surface of the confined space, suspension and stabilization of the robot

    Download full text (pdf)
    fulltext
  • 331.
    Dandan, Kinan
    et al.
    Örebro University, School of Science and Technology.
    Ananiev, Anani
    Örebro University, School of Science and Technology.
    Kalaykov, Ivan
    School of Science and Technology, Örebro University, Örebro, Sweden.
    Dynamical Analysis of Silo Surface Cleaning Robot using Finite Element Method2016In: International Journal of Mechanical Engineering & Technology (IJMET), ISSN 0976-6340, Vol. 07, no 01, p. 190-202, article id IJMET_07_01_020Article in journal (Refereed)
    Abstract [en]

    All mechanical systems are subjected to dynamic forces when they are in functioning. Thus a dynamical analysis has to be studied to determine the system behaviour. The vibration is of interest to study, due to its destructive or constructive effect. In the present era computational techniques are quite common and are very reliable as far as the modal analysis is concerned. In this work, the robot of silo cleaning is analysed for its vibration behaviour using finite element method (FEM).The robot was modelled and meshed in ANSYS. Modal analysis was conducted to calculate few initial natural frequencies. After carrying out the modal analysis, harmonic and transient analysis were done to see the response of the robot under dynamic loading. It was observed that robot is safe in its entire range of operation.

  • 332.
    Dandan, Kinan
    et al.
    Örebro University, School of Science and Technology.
    Ananiev, Anani
    Örebro University, School of Science and Technology.
    Kalaykov, Ivan
    Örebro University, School of Science and Technology.
    Modeling and simulation of a silo cleaning robot2014In: Mobile Service Robotics / [ed] Krazystof Kotowski, Mohammad O Tokhi and Gurvinder S Virk, Singapore: World Scientific, 2014, p. 627-635Conference paper (Refereed)
    Abstract [en]

    A suspended robot for surface cleaning in silos is presented in this paper. Thesuggested concept is a reasonable compromise between the basic contradictingfactors in the design: small entrance and large surface of the confined space,suspension and stabilization of the robot. A dynamic study for the suspendedrobot is presented in this paper. A dynamic simulation in MSC ADAMS iscarried out to confirm the results from the theoretic study.

    Download full text (pdf)
    Modeling and simulation of a silo cleaning robot
  • 333.
    Danielsson, Magnus
    Örebro University, School of Science and Technology.
    LiDAR Point Cloud Transfer and Rendering for SimulationPurposes2022Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Digital twins in manufacturing, logistics, retail, and healthcare can help companies makebusiness decisions by simulating changes prior to implementing such changes in real life.In robotic teleoperation, virtual reality technology such as head mounted displays canincrease operator performance. In the mining equipment industry, teleoperation is quitean established concept, using a video feed for visualization, and often similiar or the samecontrol panels as on the real machine. However, cameras don’t provide depth perceptionfor the operator, and the lighting conditions in a mine may make photogrammetry a lessthan ideal solution. Epiroc is currently working on a digital twin simulation softwarein Unity, which could be extended for teleoperation purposes. As a complement to thissoftware, a fast, high-definition Ouster OS0-128 LiDAR was used to render a point cloudof a physical environment. A Unity GameObject script was written in C# that receivesand renders coordinates as a point cloud. Two Python scripts were written to convert theLiDAR data using the Ouster SDK to coordinates, and then sending these coordinates overa TCP connection, either on the same machine, or over Wi-Fi. The Python scripts used twodifferent data formats, and the performance difference between these two data formatswas compared. The results indicated that Wi-Fi transfer of LiDAR data could be a viablesolution to continously scanning the surrounding area of equipment being teleoperatedwith quite a low delay and latency

    Download full text (pdf)
    fulltext
  • 334.
    Daoutis, Marios
    Örebro University, School of Science and Technology.
    Knowledge based perceptual anchoring: grounding percepts to concepts in cognitive robots2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A successful articial cognitive agent needs to integrate its perception of the environment with reasoning and actuation. A key aspect of this integration is the perceptual-symbolic correspondence, which intends to give meaning to the concepts the agent refers to { known as Anchoring. However, perceptual representations alone (e.g., feature lists) cannot entirely provide sucient abstraction and enough richness to deal with the complex nature of the concepts' meanings. On the other hand, neither plain symbol manipulation appears capable of attributing the desired intrinsic meaning.

    We approach this integration in the context of cognitive robots which operate in the physical world. Specically we investigate the challenge of establishing the connection between percepts and concepts referring to objects, their relations and properties.We examine how knowledge representation can be used together with an anchoring framework, so as to complement the meaning of percepts while supporting linguistic interaction. This implies that robots need to represent both their perceptual and semantic knowledge, which is often expressed in dierent abstraction levels and may originate from dierent modalities.

    The solution proposed in this thesis concerns the specication, design and implementation ofa hybrid cognitive computational model, which extends a classical anchoring framework, in order to address the creation and maintenance of the perceptual-symbolic correspondences. The model is based on four main aspects: (a) robust perception, by relying on state-of-the art techniques from computer vision and mobile robot localisation; (b) symbol grounding, using topdown and bottom-up information acquisition processes as well as multi-modal representations; (c) knowledge representation and reasoning techniques in order to establish a common language and semantics regarding physical objects, their properties and relations, that are to be used between heterogeneous robotic agents and humans; and (d) commonsense information in order to enable high-level reasoning as well as to enhance the semantic

    descriptions of objects.

    The resulting system and the proposed integration has the potential to strengthen and expand the knowledge of a cognitive robot. Specically, by providing more robust percepts it is possible to cope better with the ambiguity and uncertainty of the perceptual data. In addition, the framework is able to exploit mutual interaction between dierent levels of representation while integrating dierent sources of information. By modelling and using semantic & perceptual knowledge, the robot can: acquire, exchange and reason formally about concepts, while prior knowledge can become a cognitive bias in the acquisition of novel concepts.

    List of papers
    1. Using Knowledge Representation for Perceptual Anchoring in a Robotic System
    Open this publication in new window or tab >>Using Knowledge Representation for Perceptual Anchoring in a Robotic System
    2008 (English)In: International Journal on Artificial Intelligence Tools, ISSN 0218-2130, Vol. 17, no 5, p. 925-944Article in journal (Refereed) Published
    Abstract [en]

    In this work we introduce symbolic knowledge representation and reasoning capabilities to enrich perceptual anchoring. The idea that encompasses perceptual anchoring is the creation and maintenance of a connection between the symbolic and perceptual description that refer to the same object in the environment. In this work we further extend the symbolic layer by combining a knowledge representation and reasoning (KRR) system with the anchoring module to exploit a knowledge inference mechanisms. We implemented a prototype of this novel approach to explore through initial experimentation the advantages of integrating a symbolic knowledge system to the anchoring framework in the context of an intelligent home. Our results show that using the KRR we are better able to cope with ambiguities in the anchoring module through exploitation of human robot interaction.

    National Category
    Engineering and Technology Computer and Information Sciences
    Research subject
    Computer and Systems Science
    Identifiers
    urn:nbn:se:oru:diva-5175 (URN)
    Available from: 2009-02-24 Created: 2009-01-29 Last updated: 2024-01-02Bibliographically approved
    2. Grounding commonsense knowledge in intelligent systems
    Open this publication in new window or tab >>Grounding commonsense knowledge in intelligent systems
    2009 (English)In: Journal of Ambient Intelligence and Smart Environments, ISSN 1876-1364, E-ISSN 1876-1372, Vol. 1, no 4, p. 311-321Article in journal (Refereed) Published
    Abstract [en]

    Ambient environments which integrate a number of sensing devices and actuators intended for use by human users need to be able to express knowledge about objects, their functions and their properties to assist in the performance of everyday tasks. For this to occur perceptual data must be grounded to symbolic information that in its turn can be used in the communication with the human. For symbolic information to be meaningful it should be part of a rich knowledge base that includes an ontology of concepts and common sense. In this work we present an integration between ResearchCyc and an anchoring framework that mediates the connection between the perceptual information in an intelligent home environment and the reasoning system. Through simple dialogues we validate how objects placed in the home environment are grounded by a network of sensors and made available to a larger KB where reasoning is exploited. This first integration work is a step towards integrating the richness of a KRR system developed over many years in isolation, with a physically embedded intelligent system.

    Place, publisher, year, edition, pages
    Amsterdam: IOS Press, 2009
    Keywords
    Physical Symbol Grounding, Commonsense Knowledge Representation, Human Robot Interaction, Intelligent Home
    National Category
    Computer Sciences
    Research subject
    Computer Science; Information technology
    Identifiers
    urn:nbn:se:oru:diva-8485 (URN)10.3233/AIS-2009-0040 (DOI)000207842000002 ()2-s2.0-78651496919 (Scopus ID)
    Available from: 2009-11-09 Created: 2009-11-09 Last updated: 2024-01-02Bibliographically approved
    3. Cooperative knowledge based perceptual anchoring
    Open this publication in new window or tab >>Cooperative knowledge based perceptual anchoring
    2012 (English)In: International journal on artificial intelligence tools, ISSN 0218-2130, Vol. 21, no 3, article id 1250012Article in journal (Refereed) Published
    Abstract [en]

    In settings where heterogenous robotic systems interact with humans, information from the environment must be systematically captured, organized and maintained in time. In this work, we propose a model for connecting perceptual information to semantic information in a multi-agent setting. In particular, we present semantic cooperative perceptual anchoring, that captures collectively acquired perceptual information and connects it to semantically expressed commonsense knowledge. We describe how we implemented the proposed model in a smart environment, using different modern perceptual and knowledge representation techniques. We present the results of the systemand investigate different scenarios in which we use the common sense together with perceptual knowledge, for communication, reasoning and exchange of information.

    Place, publisher, year, edition, pages
    World Scientific, 2012
    Keywords
    Cognitive robotics; physical symbol grounding; commonsense information; multi-agent perception; object recognition
    National Category
    Computer Sciences
    Research subject
    Computer and Systems Science
    Identifiers
    urn:nbn:se:oru:diva-24226 (URN)10.1142/S0218213012500121 (DOI)000305795900008 ()2-s2.0-84863086324 (Scopus ID)
    Funder
    Swedish Research Council
    Available from: 2012-08-06 Created: 2012-08-05 Last updated: 2018-01-12Bibliographically approved
    4. Towards concept anchoring for cognitive robots
    Open this publication in new window or tab >>Towards concept anchoring for cognitive robots
    2012 (English)In: Intelligent Service Robotics, ISSN 1861-2784, Vol. 5, no 4, p. 213-228Article in journal (Refereed) Published
    Abstract [en]

    We present a model for anchoring categorical conceptual information which originates from physical perception and the web. The model is an extension of the anchoring framework which is used to create and maintain over time semantically grounded sensor information. Using the augmented anchoring framework that employs complex symbolic knowledge from a commonsense knowledge base, we attempt to ground and integrate symbolic and perceptual data that are available on the web. We introduce conceptual anchors which are representations of general, concrete conceptual terms. We show in an example scenario how conceptual anchors can be coherently integrated with perceptual anchors and commonsense information for the acquisition of novel concepts.

    Place, publisher, year, edition, pages
    Springer Berlin/Heidelberg, 2012
    Keywords
    Anchoring; Categorical perception; Near sets; Knowledge representation; Commonsense information
    National Category
    Robotics Computer Vision and Robotics (Autonomous Systems) Computer Sciences
    Research subject
    Computer Science
    Identifiers
    urn:nbn:se:oru:diva-26831 (URN)10.1007/s11370-012-0117-z (DOI)000208947900002 ()2-s2.0-84867580722 (Scopus ID)
    Funder
    Swedish Research Council
    Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2018-01-11Bibliographically approved
    Download (pdf)
    sammanfattning
    Download (pdf)
    omslag
    Download (pdf)
    spikblad
  • 335.
    Daoutis, Marios
    et al.
    Örebro University, School of Science and Technology.
    Coradeschi, Silvia
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Cooperative knowledge based perceptual anchoring2012In: International journal on artificial intelligence tools, ISSN 0218-2130, Vol. 21, no 3, article id 1250012Article in journal (Refereed)
    Abstract [en]

    In settings where heterogenous robotic systems interact with humans, information from the environment must be systematically captured, organized and maintained in time. In this work, we propose a model for connecting perceptual information to semantic information in a multi-agent setting. In particular, we present semantic cooperative perceptual anchoring, that captures collectively acquired perceptual information and connects it to semantically expressed commonsense knowledge. We describe how we implemented the proposed model in a smart environment, using different modern perceptual and knowledge representation techniques. We present the results of the systemand investigate different scenarios in which we use the common sense together with perceptual knowledge, for communication, reasoning and exchange of information.

    Download full text (pdf)
    fulltext
  • 336.
    Daoutis, Marios
    et al.
    Örebro University, School of Science and Technology.
    Coradeschi, Silvia
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Grounding commonsense knowledge in intelligent systems2009In: Journal of Ambient Intelligence and Smart Environments, ISSN 1876-1364, E-ISSN 1876-1372, Vol. 1, no 4, p. 311-321Article in journal (Refereed)
    Abstract [en]

    Ambient environments which integrate a number of sensing devices and actuators intended for use by human users need to be able to express knowledge about objects, their functions and their properties to assist in the performance of everyday tasks. For this to occur perceptual data must be grounded to symbolic information that in its turn can be used in the communication with the human. For symbolic information to be meaningful it should be part of a rich knowledge base that includes an ontology of concepts and common sense. In this work we present an integration between ResearchCyc and an anchoring framework that mediates the connection between the perceptual information in an intelligent home environment and the reasoning system. Through simple dialogues we validate how objects placed in the home environment are grounded by a network of sensors and made available to a larger KB where reasoning is exploited. This first integration work is a step towards integrating the richness of a KRR system developed over many years in isolation, with a physically embedded intelligent system.

  • 337.
    Daoutis, Marios
    et al.
    Örebro University, School of Science and Technology.
    Coradeschi, Silvia
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Integrating common sense in physically embedded intelligent systems2009In: Intelligent environments 2009 / [ed] V. Callaghan, A. Kameas, A. Reyes, D. Royo, M. Weber, Amsterdam: IOS Press, 2009, p. 212-219Conference paper (Refereed)
    Abstract [en]

    In this paper we describe an implemented framework that integrates knowledge representation and reasoning in a symbiotic system. In such systems a number of heterogeneous sensors pervasively embedded in the environment, mobile robots and humans co-exist and communicate. In this work, the integration is mediated through perceptual anchoring, which creates and maintains the correspondences between the symbol system and the perceptual data that refer to the same physical object. The overall framework is evaluated using ResearchCyc as the knowledge representation and reasoning system, within the context of a physical testbed, which consists of a small apartment-like home.

  • 338.
    Daoutis, Marios
    et al.
    Örebro University, School of Science and Technology.
    Coradeschi, Silvia
    Örebro University, School of Science and Technology.
    Loutfi, Amy
    Örebro University, School of Science and Technology.
    Towards concept anchoring for cognitive robots2012In: Intelligent Service Robotics, ISSN 1861-2784, Vol. 5, no 4, p. 213-228Article in journal (Refereed)
    Abstract [en]

    We present a model for anchoring categorical conceptual information which originates from physical perception and the web. The model is an extension of the anchoring framework which is used to create and maintain over time semantically grounded sensor information. Using the augmented anchoring framework that employs complex symbolic knowledge from a commonsense knowledge base, we attempt to ground and integrate symbolic and perceptual data that are available on the web. We introduce conceptual anchors which are representations of general, concrete conceptual terms. We show in an example scenario how conceptual anchors can be coherently integrated with perceptual anchors and commonsense information for the acquisition of novel concepts.

  • 339.
    Daoutis, Marios
    et al.
    Örebro University, School of Science and Technology.
    Mavridis, Nikolaos
    Towards a Model for Grounding Semantic Composition2014Conference paper (Refereed)
    Download full text (pdf)
    grounding-compositionality
  • 340.
    Darouich, Mohammed
    et al.
    Örebro University, School of Science and Technology.
    Youmortaji, Anton
    Evaluating Transfer Learning Capabilities of Neural NetworkArchitectures for Image Classification2022Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Training a deep neural network from scratch can be very expensive in terms of resources.In addition, training a neural network on a new task is usually done by training themodel form scratch. Recently there are new approaches in machine learning which usesthe knowledge from a pre-trained deep neural network on a new task. The technique ofreusing the knowledge from previously trained deep neural networks is called Transferlearning. In this paper we are going to evaluate transfer learning capabilities of deep neuralnetwork architectures for image classification. This research attempts to implementtransfer learning with different datasets and models in order to investigate transfer learningin different situations.

    Download full text (pdf)
    fulltext
  • 341.
    Dashti, HesamAddin T.
    et al.
    School of Math and Computer Science, University of Tehran.
    Aghaeepour, NimaSchool of Math and Computer Science, University of Tehran.Asadi, SaharÖrebro University, School of Science and Technology.Bastani, MeysamSchool of Math and Computer Science, University of Tehran.Delafkar, ZahraSchool of Math and Computer Science, University of Tehran.Disfani, Fatemeh M.School of Math and Computer Science, University of Tehran.Ghaderi, Serveh M.School of Math and Computer Science, University of Tehran.Kamali, ShahinSchool of Math and Computer Science, University of Tehran.Pashami, SepidehÖrebro University, School of Science and Technology.Siahpirani, Alireza F.School of Math and Computer Science, University of Tehran.
    Dynamic Positioning based on Voronoi Cells (DPVC)2006Collection (editor) (Refereed)
    Abstract [en]

    In this paper we are proposing an approach for flexible positioning of players in Soccer Simulation in a Multi-Agent environment. We introduce Dynamic Positioning based on Voronoi Cells (DPVC) as a new method for players' positioning which uses Voronoi Diagram for distributing agents in the field. This method also uses Attraction Vectors that indicate agents' tendency to specific objects in the field with regard to the game situation and players' roles. Finally DPVC is compared with SBSP as the conventional method of positioning.

  • 342.
    Davidsson, Paul
    et al.
    Malmö University, Malmö, Sweden.
    Klügl, Franziska
    Örebro University, School of Science and Technology.
    Verhagen, Harko
    Stockholm University, Stockholm, Sweden.
    Simulation of Complex Systems2017In: Springer Handbook of Model-Based Science / [ed] Lorenzo Magnani and Tommaso Bertolotti, Cham: Springer, 2017, 1, p. 783-797Chapter in book (Refereed)
    Abstract [en]

    Understanding and managing complex systems has become one of the biggest challenges for research, policy and industry. Modeling and simulationof complex systems promises to enable us to understand how a human nervous systemand brain not just maintain the activities of a metabolism, but enable the production of intelligent behavior, how huge ecosystems adapt to changes, or what actually influences climatic changes. Also man-made systems are getting more complex and difficult, or even impossible, to grasp. Therefore we need methods and tools that can help us in, for example, estimating how different infrastructure investments will affect the transport system and understanding the behavior of large Internet-based systems in different situations. This type of system is becoming the focus of research and sustainable management as there are now techniques, tools and the computational resources available. This chapter discusses modeling and simulation of such complex systems. We will start by discussing what characterizes complex systems.

  • 343.
    De Bie, Tijl
    et al.
    Internet and Data Lab (IDLab) at Ghent University, Ghent, Belgium.
    De Raedt, Luc
    Örebro University, School of Science and Technology. Department of Computer Science and Director of the KU Leuven Institute for AI at KU Leuven, Leuven, Belgium.
    Hernandez-Orallo, Jose
    Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, València, Spain.
    Hoos, Holger H.
    Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, Netherlands; University of British Columbia, Vancouver BC, Canada.
    Smyth, Padhraic
    Computer Science and Statistics Departments, University of California, Irvine, CA, USA.
    Williams, Christopher K., I
    School of Informatics, University of Edinburgh, Edinburgh, UK; Alan Turing Institute, London, UK.
    Automating Data Science2022In: Communications of the ACM, ISSN 0001-0782, E-ISSN 1557-7317, Vol. 65, no 3, p. 76-87Article, review/survey (Refereed)
  • 344.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark (DTU), Lyngby, Denmark.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark (DTU), Lyngby, Denmark.
    Combining ANTIBIOTIC with Fog Computing: ANTIBIOTIC 2.02019In: 2019 IEEE 3rd International Conference on Fog and Edge Computing, ICFEC 2019 - Proceedings, IEEE , 2019Conference paper (Refereed)
    Abstract [en]

    The Internet of Things (IoT) has been one of the key disruptive technologies over the last few years, with its promise of optimizing and automating current manual tasks and evolving existing services. From the security perspective, the increasing adoption of IoT devices in all aspects of our society has exposed businesses and consumers to a number of threats, such as Distributed Denial of Service (DDoS) attacks. To tackle this IoT security problem, we proposed ANTIBIOTIC 1.0 In However, this solution has some limitations that make it difficult (when not impossible) to be implemented in a legal and controlled manner. Along the way, Fog computing was born: a novel paradigm that aims at bridging the gap between IoT and Cloud computing, providing a number of benefits, including security. As a result, in this paper, we present ANTIBIOTIC 2.0, an anti-malware that relies upon Fog computing to secure IoT devices and to overcome the main issues of its predecessor (ANTIBIOTIC 1.0). First, we present ANTIBIOTIC 1.0 and its main problem. Then, after introducing Fog computing, we present ANTIBIOTIC 2.0, showing how it overcomes the main issues of its predecessor by including Fog computing in its design.

  • 345.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Giaretta, Alberto
    Örebro University, School of Science and Technology.
    Mazzara, Manuel
    Innopolis University, Innopolis, Russian Federation.
    AntibIoTic: Protecting IoT Devices Against DDoS Attacks2018In: Proceedings of 5th International Conference in Software Engineering for Defence Applications: SEDA 2016 / [ed] Ciancarini, P.; Litvinov, S.; Messina, A.; Sillitti, A.; Succi, G., Cham: Springer, 2018, p. 59-72Conference paper (Refereed)
    Abstract [en]

    The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices.

  • 346.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Giaretta, Alberto
    Örebro University, School of Science and Technology.
    Spognardi, Angelo
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Analysis of DDoS-Capable IoT Malwares2017In: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems / [ed] M. Ganzha, L. Maciaszek, M. Paprzycki, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 807-816Conference paper (Refereed)
    Abstract [en]

    The Internet of Things (IoT) revolution promises to make our lives easier by providing cheap and always connected smart embedded devices, which can interact on the Internet and create added values for human needs. But all that glitters is not gold. Indeed, the other side of the coin is that, from a security perspective, this IoT revolution represents a potential disaster. This plethora of IoT devices that flooded the market were very badly protected, thus an easy prey for several families of malwares that can enslave and incorporate them in very large botnets. This, eventually, brought back to the top Distributed Denial of Service (DDoS) attacks, making them more powerful and easier to achieve than ever. This paper aims at provide an up-to-date picture of DDoS attacks in the specific subject of the IoT, studying how these attacks work and considering the most common families in the IoT context, in terms of their nature and evolution through the years. It also explores the additional offensive capabilities that this arsenal of IoT malwares has available, to mine the security of Internet users and systems. We think that this up-to-date picture will be a valuable reference to the scientific community in order to take a first crucial step to tackle this urgent security issue.

  • 347.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Giaretta, Alberto
    Örebro University, School of Science and Technology.
    Spognardi, Angelo
    Computer Science Department, Sapienza University of Rome, Rome, Italy.
    DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation2018In: Security and Communication Networks, ISSN 1939-0114, E-ISSN 1939-0122, article id 7178164Article in journal (Refereed)
    Abstract [en]

    The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far.

  • 348.
    De Donno, Michele
    et al.
    Technical University of Denmark, DTU Compute, Lyngby, Denmark.
    Felipe, Juan Manuel Donaire
    Technical University of Denmark, DTU Compute, Lyngby, Denmark.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. Technical University of Denmark, DTU Compute, Lyngby, Denmark.
    ANTIBIOTIC 2.0: A Fog-based Anti-Malware for Internet of Things2019In: 4th IEEE European Symposium on Security and Privacy Workshops, EUROS and PW 2019: Proceedings, IEEE , 2019, p. 11-20Conference paper (Refereed)
    Abstract [en]

    The Internet of Things (IoT) has been one of the key disruptive technologies over the last few years, with its promise of optimizing and automating current manual tasks and evolving existing services. However, the increasing adoption of IoT devices both in industries and personal environments has exposed businesses and consumers to a number of security threats, such as Distributed Denial of Service (DDoS) attacks. Along the way, Fog computing was born. A novel paradigm that aims at bridging the gap between IoT and Cloud computing, providing a number of benefits, including security. In this paper, we present ANTIBIOTIC 2.0, an anti-malware that relies upon Fog computing to secure IoT devices and to overcome the main issues of its predecessor (ANTIBIOTIC 1.0). In particular, we discuss the design and implementation of the system, including possible models for deployment, security assumptions, interaction among system components, and possible modes of operation.

  • 349.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Giaretta, Alberto
    Örebro University, School of Science and Technology.
    Dragoni, Nicola
    Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Bucchiarone, Antonio
    Fondazione Bruno Kessler, Trento, Italy.
    Mazzara, Manuel
    Institute of Software Development and Engineering, Innopolis University, Innopolis, Russian Federation.
    Cyber-Storms Come from Clouds: Security of Cloud Computing in the IoT Era2019In: Future Internet, E-ISSN 1999-5903, Vol. 11, no 6, article id 127Article in journal (Refereed)
    Abstract [en]

    The Internet of Things (IoT) is rapidly changing our society to a world where every thing is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds.

  • 350.
    De Donno, Michele
    et al.
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
    Giaretta, Alberto
    Örebro University, School of Science and Technology.
    Dragoni, Nicola
    Örebro University, School of Science and Technology.
    Spognardi, Angelo
    DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; Dipartimento Informatica, Sapienza Università di Roma, Rome, Italy.
    A Taxonomy of Distributed Denial of Service Attacks2017In: i-Society 2017: Proceedings / [ed] Charles A. Shoniregun, Galyna A. Akmayeva, Infonomics Society, 2017, p. 99-106Conference paper (Refereed)
45678910 301 - 350 of 1393
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf